
Implementation of Fog Nodes
in the Tree-Based Fog Computing

(TBFC) Model of the IoT

Ryusei Chida1(B), Yinzhe Guo1, Ryuji Oma1, Shigenari Nakamura1,
Dilawaer Duolikun1, Tomoya Enokido2, and Makoto Takizawa1

1 Hosei University, Tokyo, Japan
{ryusei.chida.7n,yinzhe.guo.8m,ryuji.oma.6r}@stu.hosei.ac.jp,

nakamura.shigenari@gmail.com, dilewerdolkun@gmail.com,

makoto.takizawa@computer.org
2 Rissho University, Tokyo, Japan

eno@ris.ac.jp

Abstract. The IoT (Internet of Things) is so scalable that not only
computers like servers but also sensors and actuators installed in various
things are interconnected in networks. In the cloud computing model,
application processes to process sensor data are performed on servers,
this means networks are congested and servers are overloaded to handle
a huge volume of sensor data. The fog computing model is proposed to
efficiently realize the IoT. Here, subprocesses of an application process
are performed on not only servers but also fog nodes. Servers finally
receive data processed by fog nodes. Thus, traffic to process sensor data
in severs and to transmit sensor data in networks can be reduced in the
fog computing model. In this paper, we take the tree-based fog com-
puting (TBFC) model where fog nodes are hierarchically structured in a
height-balanced tree. We implement types of subprocesses of fog nodes in
Raspbery PI. In experiment of the implemented TBFC model, we show
the total execution time of nodes in the TBFC model is shorter than the
cloud computing model.

Keywords: IoT (Internet of Things) · Fog computing model ·
Tree-based fog computing (TBFC) model · Raspberry Pi

1 Introduction

The IoT (Internet of Things) is composed of not only computers like servers and
clients but also devices like sensors and actuators which are interconnected in
networks [10]. In the cloud computing model [6], every sensor data is transmit-
ted from sensors to servers of clouds in networks. Sensor data is processed by
application processes on servers and then servers send actions to actuators. The
IoT is more scalable than traditional information systems since a huge number

c© Springer Nature Switzerland AG 2019
L. Barolli et al. (Eds.): EIDWT 2019, LNDECT 29, pp. 92–102, 2019.
https://doi.org/10.1007/978-3-030-12839-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12839-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-12839-5_8

Implementation of Fog Nodes 93

of sensors are interconnected and huge amount of sensor data are transmitted in
networks. The network is congested due to heavy network traffic of sensor data
and servers are also overloaded to process sensor data.

In order to efficiently realize the IoT, the fog computing model [13] is pro-
posed. Here, subprocesses of an application process to process sensor data are
performed on not only servers in clouds but also fog nodes while performed only
on servers in the cloud computing model [6]. Data obtained by sensors are first
transmitted to edge fog nodes. On receipt of sensor data, a fog node processes
the sensor data and outputs processed data to another fog node. For example,
a fog node obtains an average value of a collection of humidity data collected
by sensors and sends only the average value of the humidity data to another
fog node. Thus, fog nodes receive and process input data from other fog nodes
and send output data obtained by processing the input data to other fog nodes.
Servers finally receive data processed by fog nodes and can be relived from the
computations done by fog nodes. In addition to the routing function of a router,
a subprocess of an application process to process sensor data is installed in a
fog node.

The TBFC (Tree-Based Fog Computing) model is proposed to reduce electric
energy consumed by fog nodes and servers in the IoT [11,14]. Here, fog nodes are
hierarchically structured in a height-balanced tree. A root fog node indicates a
cluster of servers. Each non-root fog node has one parent fog node. Each non-leaf
node has one or more than one child fog node. An edge fog node is a leaf node of
the tree and communicates with sensors and actuators. An application process to
be performed on servers to handle sensor data in the cloud computing model is
assumed to be a sequence of subprocesses in this paper. Each subprocess receives
input data from a preceding subprocess and sends output data to a succeeding
subprocess. In the TBFC model, a same subprocess is installed in fog nodes at
each level. Thus, each fog node at the same level performs the same subprocess on
input data sent by child fog nodes and sends processed output data to a parent
fog node. Sensor data from a huge number of sensors are processed by multiple
fog nodes in a distributed and parallel manner. The fault-tolerant tree-based fog
computing (FTTBFC) model is also proposed to make the TBFC model tolerant
of faults of fog nodes [11,12].

In this paper, we implement each fog node of the TBFC model by using a
Raspberry Pi [3] computer in this paper. Each subprocess of each fog node is
characterized by the computation complexity O(x) or O(x2) for size x of input
data. We show the experiments of the implemented fog nodes of the TBFC
model and show that the total execution time fog nodes and a server of the
TBFC model is shorter than the cloud computing model.

In Sect. 2, we present the tree-based fog computing (TBFC) model. In Sect. 3,
we discuss the implementation of the TBFC model. In Sect. 4, we show experi-
ments of the implemented TBFC model.

94 R. Chida et al.

2 Tree-Based Fog Computing (TBFC) Model

2.1 Tree of Fog Nodes

The fog computing model of the IoT is composed of devices, fog nodes, and clouds
of servers [10]. Each server in a cloud supports applications with computation
and storage services like the cloud computing model [6]. There are networks of
fog nodes to interconnect devices and clouds. Devices like sensors and actuators
are installed in various types of things. In the tree-based fog computing (TBFC)
model [14], fog nodes are hierarchically structured in a height-balanced tree. A
root node shows a cloud of servers. Each fog node is interconnected with a parent
fog node and child fog nodes in networks. Fog nodes at the bottom layer are edge
fog nodes. Edge fog nodes communicate with child sensors and actuators. Each
device, i.e. sensor and actuator, has a parent edge fog node. A sensor collects
sensor data and sends the sensor data to an edge fog node. Each edge fog node
first collects sensor data from sensors. Each edge fog node processes sensor data
and sends processed output data to a parent fog node. A fog node receives input
data from child fog nodes and processes the data. Then, the fog node sends the
processed output data to the parent fog node. Thus, servers in clouds finally
receive processed data from fog nodes. Servers just process data processed by
fog nodes and decide on actions to be done by actions. Servers send actions to
fog nodes. Fog nodes forward the actions to their child fog nodes and each edge
fog node finally sends actions to child actuators.

Figure 1 shows a tree of fog nodes in the TBFC model. Here, f0 is a root
node which denotes a cloud of servers. The root node f0 has l0 (≥ 0) child fog
nodes f00, f01, ..., f0,l0−1. Each child fog node f0i has l0i (≥ 0) child fog nodes
f0i0, f0i1, ..., f0i,l0i−1. Thus, a fog node fR is f0 if fR is a root node, i.e. R = 0.
If fR is an i th child fog node of a fog node fR′ , fR = fR′i, i.e. R = R′i (i <lR).
Thus, the label R of a fog node fR shows a path from a root fog node f0 to the
fog node fR. |R| shows the length of label R of a fog node fR. Here, a fog node
fR is at level |R|−1. For example, a root fog node f0 is at level 0 and a fog node
f010 is at level 2. On a fog node fR, a subprocess p(fR) of an application process
is performed. At each layer, a same subprocess is performed on every fog node.

A subprocess p(fR) of a fog node fR receives input data dR0, dR1, ..., dR,lR−1

from child fog nodes fR0, fR1 ..., fR,lR−1, respectively. Let DR be a set of input
data dR0, ..., dR,lR−1 of the fog node fR. Then the input data is processed
and output data dR is generated. The output data dR is sent to a parent fog
node ptfR .

2.2 Subprocesses on Fog Nodes

An application process p is assumed to be a sequence 〈p0, p1, ..., ph−1〉 of subpro-
cesses. In the TBFC model, fog nodes are structured in a height-balanced tree of
fog nodes with height h. All the subprocesses p0, p1, ..., ph−1 are performed on
servers in the cloud computing model. Only the subprocess p0 is performed on a
root node, i.e. server cloud f0. The subprocess p0 is a root subprocess. The other

Implementation of Fog Nodes 95

subprocesses p1, ..., ph−1 are performed on different fog nodes. The subprocess
ph−1 is first performed on edge fog nodes of level h − 1 by receiving data from
sensors. The subprocess ph−1 is an edge subprocess. The output data of the edge
subprocess ph−1 is sent to the succeeding subprocess ph−2, which is performed
on each of fog nodes of level h − 2. Thus, a subprocess pi is performed on fog
nodes of level i and sends output data to a succeeding subprocess pi−1 on fog
nodes of level i−1. The lower layer, the more amount of input data are sent from
the underlying layer but the more number of fog nodes since the TBFC model
is tree-structured and the output data of each fog node is generally smaller than
the input data. Hence, the processing load of each fog node is equalized.

Fig. 1. TBFC model.

In the cloud computing model [6], a fog node is just a router which does only
the routing function. In each fog node, not only the routing function but also a
subprocess of an application process are performed in the fog computing model.
Sensors send every sensor data to servers in a cloud.

There are types of subprocesses characterized in terms of computation com-
plexity. In this paper, we consider the following types of subprocesses to be
performed on a fog node fR to handle input data DR of size x (= |DR|) [12]:

1. O(x), e.g. subprocess to calculate an average value of input data DR.
2. O(x2), e.g. subprocess to join multiple input data dR0, ..., dR,lR−1 in input

data DR.

For example, a fog node fR just selects some data in input data DR of size x (=
|DR|), e.g. a maximum value is selected in a collection DR of input data from
child fog nodes. Here the computation complexity of the subprocess is O(x). The
computation complexity of a fog node fR to merge sorted input data is O(x).
The computation complexity of a fog node fR which joins multiple input data is
O(x2) where multiple input data DR which have the same attribute values are
concatenated.

96 R. Chida et al.

3 Implementation of the TBFC Model

We discuss the implementation of fog nodes in the TBFC model. Each fog node
fR is implemented in a Raspberry Pi 3 Model B [3] computer with a CPU ARM
Cortex-A53, one [GB] memory, and 32 [GB] SD storage. The Raspbian 8.0 [3] is
used as an operating system of a fog node. A subprocess of an application process
to be performed on each fog node is implemented in C language. Fog nodes are
interconnected in a Gbit local area network (LAN). Fog nodes communicate with
one another by using the protocol UDP [5]. A record is a unit of communication
among fog nodes where data is stored. Each record is composed of attributes.
Each fog node fR has one UDP socket, US. A fog node fR receives records from
child fog nodes fR0, ..., fR,lR−1 and sends records at the UDP socket US.

We consider the following types of subprocesses to be performed on each fog
node fR:

1. In a fog node fR, an aggregate value, e.g. average value of input data DR

is obtained and the aggregate data dR is output by an aggregate subprocess
[Fig. 2(1)]. The computation complexity of the fog node fR is O(x) for size
x (= |DR|) of input data DR.

2. In a fog node fR, sorted input data dR0, dR1, ..., fR,lR−1 are merged into a
sorted data dR by a sort subprocess [Fig. 2(2)]. The computation complexity
of the fog node fR is O(x).

3. In a fog node fR, multiple input data dR0, dR1, ..., dR,lR−1are joined to one
output data dR by a join subprocess [Fig. 2(3)]. The computation complexity
of the fog node is O(x2).

Fig. 2. Types of subprocesses on fog nodes.eps

A fog node fR receives a record of input data dRi from each child fog node fRi

and stores the record dRi in a receipt queue RQi. Each record dRi is composed
of attribute values, i.e. tuple 〈 v1, ..., vl 〉 (l > 1). On receipt of each record dRi,

Implementation of Fog Nodes 97

a cell c is dynamically allocated in a fog node fR. The record dRi is stored in the
cell c and the cell c is enqueued into the receipt queue RQi. While dequeueing a
top record dRi from each receipt queue RQi, records of input data dR0, dR1, ...,
dR,lR−1 are processed and a record of output data dR is generated by performing
a subprocess on the input data DR. The output record dR is enqueued into an
output queue SQ. A top record dR is dequeued from the output queue SQ and
sent to the parent fog node of fR by using UDP.

Each queue Q is implemented in data structure as shown in Fig. 3. Each queue
Q is composed of a control block CBC and doubly linked cells. The variable no
of the data structure CBC shows the number of cells in the queue Q. The top and
tail fields of the CBC block denote pointers to the top and tail cells of the queue
Q. On receipt of a record dRi from a child fog node fRi, one cell c is created
by a malloc system call [7] and the record dRi is stored in the cell c. Then, the
cell c is enqueued in the receipt queue RQi, i.e. stored as the tail cell of the
receipt queue RQi. Cells are linked in bidirectional pointers, next and prior.
The next and prior pointers of a cell c denote cells following and preceding the
cell c, respectively.

Each queue Q is manipulated through the following functions:

1. struct CBC *iniqueue();
2. enqueue (struct CBC *cbc, struct CELL *c);
3. struct CELL *dequeue (struct CBC *cbc);
4. struct CELL *topqueue (struct CBC *cbc);

First, a control block cbc is created by the function iniqueue(), i.e. cbc =
iniqueue(). A cell c is dequeued from the queue cbc by the function c = dequeue
(cbc). A cell c is enqueued to the queue cbc by the function enqueue (cbc, c). A
top cell c in the queue cbc is found by c = topqueue (cbc).

In this paper, every subprocess to be performed on each fog node is imple-
mented on the Raspbian operating system in C language. A subprocess on each
fog node fR communicates with each child fog node and a parent fog node by
using the UDP protocol [5].

Fig. 3. Queue.

98 R. Chida et al.

Fig. 4. Fog node.

4 Experiment

4.1 Implemented TBFC Model

We present the experiment of the implemented TBFC model. There are four
sensors s0, s1, s2, and s3, and seven fog nodes f00, f000, f001, f0000, f0001, f0010,
and f0011 in a tree. The sensors, fog nodes, and sever are interconnected in a
Gbit LAN. One root node f0 is in a cluster. As shown in Fig. 5, the root fog node
f0 is a server in the cloud. The root node f0 has a single child fog node f00. The
fog node f00 has a pair of child fog nodes f000 and f001. The fog nodes f000 and
f001 of level 2 have pairs of child fog nodes f0000 and f0001, and f0010 and f0011,
respectively. The four fog nodes f0000, f0001, f0010, and f0011 are edge fog nodes
at level 3, which communicate with sensors s0, s1, s2, and s3, respectively.

Each of the fog nodes and sensors is implemented in a Raspberry PI BM
model computer [3]. A pair of the sensors s0 and s1 collect temperature data. A
pair of the sensors s2 and s3 collect humidity data. Each sensor gets sensor data
every one second and sends the data to a parent edge fog node.

The sever f0 is a PC with a CPU Intel Xeon X3430, 16 [GB] memory, and
2 [TB] HDD, whose operating system is CentOS 7 [1]. In the server f0, a Sybase
[4] database is supported to store data obtained from the fog node f00. In the
TBFC model, the store subprocess is implemented in C language with transact
SQL [4].

In the experiment, each edge fog node is equipped with one sensor as shown
in Fig. 4. A pair of the edge fog nodes f0000 and f0001 collect temperature data
from the sensors s0 and s1, respectively. Another pair of edge fog nodes f0010 and
f0011 collect humidity data from the sensors s2 and s3, respectively. A process of
a sensor to collect sensor data is realized in Python [2]. Sensor data is collected
by the polling mechanism every one second. A record of collected sensor data is
sent by each sensor to an edge fog node, which is composed of time and value.
This means, the value is sensor data, i.e. temperature and humidity, which is

Implementation of Fog Nodes 99

obtained at the time. That is, temperature data is collected by a pair of the
sensors s0 and s1 and humidity data is collected by another pair of the sensors
s2 and s3 at time. The sensors s0, s1, s2, and s3 send records of sensor data to
the edge fog nodes f0000, f0001, f0010, and f001, respectively, every one second.

Each edge fog node f00ij receives sensor data from a sensor every one sec-
ond. Then, the edge fog node f00ij calculates an average value of sensor data,
temperature or humidity data collected from the sensors for every one minute
(i, j = 0, 1). A subprocess aggregate is performed by each edge fog node f00ij
to obtain an average value from input data. Then, the edge fog node f00ij sends
the output data d00ij to the parent fog node f00i.

A parent fog node f00i receives a pair of input data d00i0 and d00i1 from
child fog nodes f00i0 and f00i1, respectively. The parent fog nodes f000 and f001
collect temperature data and humidity data from child fog nodes, respectively. A
subprocess merge is performed on each fog node f00i. Then, a pair of the input
data d00i0 and d00i1 are merged into the output data d00i. If values of input data
d00i0 and d00i1, whose time is the same, are received, the output data d00i is the
average value of the input data d00i0 and d00i1. Here, the output data d000 of
temperature is sorted in time. The output data d001 of humidity is also sorted
in time. The fog node f00i sends the output data d00i to the fog node f00 (i =
0, 1).

The fog node f00 receives input data from the child fog nodes f000 and f001.
A pair of input data d000 = 〈v000, t000〉 and d001 = 〈v001, t001〉 are joined, i.e.
concatenated by the fog node f00 into one output data d00. In the output data
d00, temperature data v000 and humidity data v001 whose time is the same, i.e.
t000 = t001 = t are concatenated to a record 〈t, v000, v001〉. Thus, a subprocess
join is performed on the fog node f00. The fog node f00 sends the output data
d00 to the root node f0.

The root fog node f0 is a server which receives input data d00 = 〈t, v001,
v001〉 from the fog node f00. The server f0 stores the data d00 to a table Data
(time, temperature, humidity) in the database DB0 by SQL insert [7] once the
server f0 receives the data. The database DB0 is implemented in Sybase [4]. A
subprocess store is performed on the root node f0.

In the cloud computing model, the sensors s0, s1, s2, and s3 are directly
interconnect with a sever f0 as shown in Fig. 5. Sensor data from the sensors
s0, s1, s2, and s3 are sent to the server f0 by using UDP in a Gbps LAN. All
the aggregate, merge, join, and store subprocesses are performed on the server
f0. Every sensor data sent by the sensors is processed by a sequence of the
aggregate, merge, join, and store subprocesses on the server f0.

4.2 Experiment

We measure total execution time TET [sec] of all the fog nodes and the server
since the sensors s0, s1, s2, and s3 send temperature and humidity data to the
edge fog nodes until the server f0 stores the data to the database DB0 in the
cloud computing model and in the TBFC model. In order to measure the total
execution time TET , one fog node fc is used as shown in Figs. 5 and 6. The fog

100 R. Chida et al.

Fig. 5. Experiment of TBFC model.

node fc sends a start message to every sensor at time t1 and then the sensors
start sending sensor data. If every sensor data is stored in the database DB0,
the server f0 sends a termination message to the fog node fc. The fog node
fc receives the termination massage at time t2. Here, the total execution time
TET is t2 − t1 [sec].

Fig. 6. Cloud computing model.

Implementation of Fog Nodes 101

Fig. 7. Total execution time.

Figure 7 shows the total execution time TET of the TBFC model and the
cloud computing model for number rn of records stored in the database DB0.
The total execution time TET of the TBFC model and the cloud computing
model linearly increases as the number rn of records increases. The total execu-
tion time TET of the TBFC model is shorter than the cloud computing model.
For example, the total execution time TET of the TBFC model is only 7% and
9% of the cloud computing model, respectively, for rn= 10, 000 and rn= 20, 000.
This experiment shows the IoT can be efficiently realized by the TBFC model.

5 Concluding Remarks

The fog computing model is useful to efficiently realize the IoT since processes
and data are distributed to not only servers but also fog nodes. Then, traffic
of servers and networks can be reduced in the fog computing model. In this
paper, we discussed the implementation of each fog node in the tree-based fog
computing (TBFC) model by a Raspberry Pi 3 Model B computer. We imple-
mented the subprocesses of computation complexity O(x) and O(x2) for size x
of input data, to be performed by each fog node. We showed the experiment of
the implemented TBFC model in Raspberry PI.

Here, four sensors, seven fog nodes, and a server are hierarchically structured
in a height-balanced tree. In the evaluation, the total execution time of the TBFC
model is about 90% to 95% shorter than the cloud computing model. We showed
the IoT can be efficiently realized in the TBFC model.

In the IoT, it is critical to reduce the total electric energy consumption
[11,12]. We are now evaluating the TBFC model in terms of electric energy [8,9]
consumed by fog nodes and servers.

Acknowledgements. This work was supported by JSPS KAKENHI grant number
15H0295.

102 R. Chida et al.

References

1. The centos linux distribution (centos linux). https://www.centos.org/
2. Python. https://www.python.org/downloads/release/python-2713/
3. Raspberry Pi 3 model B. https://www.raspberrypi.org/products/raspberry-pi-3-

model-b/
4. Sybase. https://www.sap.com/products/sybase-ase.html
5. Comer, D.E.: Internetworking with TCP/IP, vol. 1. Prentice Hall, Englewood Cliffs

(1991)
6. Creeger, M.: Cloud computing: an overview. Queue 7(5), 3–4 (2009)
7. Date, C.J.: An Introduction to Database System, 8th edn. Addison Wesley, Reading

(2003)
8. Enokido, T., Ailexier, A., Takizawa, M.: An extended simple power consumption

model for selecting a server to perform computation type processes in digital ecosys-
tems. IEEE Trans. Industr. Inf. 10(2), 1627–1636 (2014)

9. Enokido, T., Ailexier, A., Takizawa, M.: A model for reducing power consumption
in peer-to-peer systems. IEEE Syst. J. 4(2), 221–229 (2010)

10. Hanes, D., Salgueiro, G., Grossetete, P., Barton, R., Henry, J.: IoT Fundamentals:
Networking Technologies, Protocols, and Use Cases for the Internet of Things.
Cisco Press, Indianapolis (2018)

11. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Evaluation of
an energy-efficient tree-based model of fog computing. In: Proceedings of the 21st
International Conference on Network-Based Information Systems (NBiS-2018), pp.
99–109 (2018)

12. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Fault-tolerant
fog computing models in the IoT. In: Proceedings of the 13th International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2018)
(Accepted, 2018)

13. Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: An energy-efficient model
of fog and device nodes in IoT. In: Proceedings of IEEE the 32nd International
Conference on Advanced Information Networking and Application (AINA-2018),
pp. 301–306 (2018)

14. Oma, R., Nakamura, S., Enokido, T., Takizawa, M.: A tree-based model of energy-
efficient fog computing systems in IoT. In: Proceedings of the 12th International
Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2018),
pp. 991–1001 (2018)

https://www.centos.org/
https://www.python.org/downloads/release/python-2713/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.sap.com/products/sybase-ase.html

	Implementation of Fog Nodes in the Tree-Based Fog Computing (TBFC) Model of the IoT
	1 Introduction
	2 Tree-Based Fog Computing (TBFC) Model
	2.1 Tree of Fog Nodes
	2.2 Subprocesses on Fog Nodes

	3 Implementation of the TBFC Model
	4 Experiment
	4.1 Implemented TBFC Model
	4.2 Experiment

	5 Concluding Remarks
	References

